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Topics for Today

• Longitudinal Motion

• Some of the Possible Limitations

• On the Way to HL-LHC…
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Longitudinal Motion
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Motion in the Longitudinal Plane
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• What happens when particle momentum increases in a constant magnetic field?

• Travel faster (initially)
• Follow a longer orbit

• Hence a momentum change influence on the revolution frequency
𝑑𝑓
𝑓 =

𝑑𝑣
𝑣 −

𝑑𝑟
𝑟

• From the momentum compaction factor we have:
∆𝑟
𝑟
= 𝛼!

∆𝑝
𝑝

• Therefore:
𝑑𝑓
𝑓
=
𝑑𝑣
𝑣
− 𝛼!

𝑑𝑝
𝑝



Revolution Frequency – Beam Momentum
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From the relativity theory:

𝑑𝑓
𝑓 =

𝑑𝑣
𝑣 − 𝛼!

𝑑𝑝
𝑝

𝑑𝑣
𝑣 =

𝑑𝛽
𝛽 ⟺ 𝛽 =

𝑣
𝑐

𝑝 =
𝐸!𝛽𝛾
𝑐

𝑑𝑣
𝑣 =

𝑑𝛽
𝛽 =

1
𝛾"
𝑑𝑝
𝑝

Resulting  in :
𝑑𝑓
𝑓
=

1
𝛾,
− 𝛼!

𝑑𝑝
𝑝

We can get:



Transition
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• Low momentum (𝛽 << 1 & 𝛾 is small) à

• High momentum (𝛽 ≈ 1 & 𝛾 >> 1) à

• Transition momentum à

𝑑𝑓
𝑓
=

1
𝛾,
− 𝛼!

𝑑𝑝
𝑝
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RF Cavity Workings
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• Charged particles are accelerated by a longitudinal electric field
• The electric field needs to alternate with the revolution frequency



RF Cavities
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Super conducting fixed frequency 
LHC cavity

PS variable frequency cavity 

SPS 200 MHz fixed frequency 
Cavities



Low Momentum Particle Motion
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• Let's see what a low energy particle does with this oscillating voltage in the cavity

1st revolution period

V

time

2nd revolution period

V



Longitudinal Motion Below Transition
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…after many turns
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900st revolution period

V

time

A
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• Particle B has made 1 full oscillation around particle A
• The amplitude depends on the initial phase

• These are Synchrotron Oscillations



Stationary Bunch & Bucket

Rende Steerenberg - CERN CERN-Fermilab HCP Summer School   
14 August 2020 13

• Bucket area = longitudinal Acceptance [eVs]
• Bunch area = longitudinal beam emittance = 𝜋.∆E.∆t/4  [eVs]

∆E

∆t (or 𝛷)

∆E

∆t

Bunch

Bucket



What About Beyond Transition
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• Until now we have seen how things look like below transition

Higher energy ] faster orbit ] higher Frev] next time particle will be earlier.

Lower energy ] slower orbit ] lower Frev] next time particle will be later.

• What will happen above transition ?

Higher energy ] longer orbit ] lower Frev] next time particle will be later. 

Lower energy ] shorter orbit ] higher Frev] next time particle will be earlier. 



Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V Phase w.r.t. RF 
voltage 

𝛷 Synchronous particle

RF Bucket

Bunch



Longitudinal Motion Beyond Transition
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Before & After Transition
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Before transition

Stable, synchronous
position

E

∆t (or 𝛷)

After transition

E

∆t (or 𝛷)



Acceleration
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• Increase the magnetic field slightly.
• The particles will follow a shorter orbit. (frev < fsynch)
• Beyond transition, early arrival in the cavity causes a gain in energy each turn.

𝛷

V
dE = V.sin𝛷s

∆t (or 𝛷)

• We change the phase of the cavity such that the new synchronous particle is at 𝛷s and 
therefore always sees an accelerating voltage

• Vs = Vsin𝛷s = V𝛤 = energy gain/turn = dE



Harmonic RF Voltage - Multiple bunches
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• Until now we have applied an oscillating 
voltage with a frequency equal to  the 
revolution frequency

frf = frev

• Applying an frf which is a multiple of frev gives

frf = h frev

∆E

∆t (or 𝛷)

V

∆t (or 𝛷)

1 revolution period

RF harmonic 2 case



RF Beam Control
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Radial Position 
regulation

Phase 
regulation

Beam position and 
phase data

Cavity voltage and phase 
(frequency) data

Beam

Beam Position
Monitor

Radio frequency
Cavity



Some of the Possible Limitations
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Space Charge
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• Between two charged particles in a beam we have different forces:
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Space Charge
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• At low energies, which means β<<1, the force is mainly repulsive ⇒ defocusing
• It is zero at the centre of the beam and maximum at the edge of the beam
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Collective Effects
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• Induced currents in the vacuum chamber (impedance) can result in electric and 
magnetic fields acting back on the bunch or beam

Coupled Bunch Instabilities

Head-Tail Instabilities



Electron Cloud
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• e-cloud when SEY is beyond 2, hence it depends on the vacuum chamber surface

• The electron cloud forms an impedance to the beam and can cause beam instability
• In the SPS and the LHC we use the “scrubbing” method to reduce the SEY

• The SPS vacuum chambers will be Carbon coated to reduce the SEY



Beam-Beam Effect & Crossing Angle
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• Particle beam are surrounded by magnetic fields
• If the beams “see” each other in colliders these magnetic fields can act 

on the both beams

• The strength of this action 
depends on:

• The beam intensity
• The distance between the 

beams



On they Way to HL-LHC…
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LHC Luminosity, the Figure of Merit
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ℒ =
.𝑁./.012
𝑠𝑒𝑐𝑜𝑛𝑑
𝜎3

=
𝑁4𝑁, 𝑓3./𝑛5
4𝜋𝜎6𝜎7

ℱ

Intensity 
per bunch

Number of 
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correction factors

Beam 
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mino
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C
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Fixed parameters:
• Revolution frequency
• Number of bunches

Parameters to optimize:
• Intensity per bunch
• Transverse beam dimensions
• Geometrical correction factors



Linac 4, a key ingredient for LIU
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Injector Limitations Lifted

Rende Steerenberg - CERN CERN-Fermilab HCP Summer School   
14 August 2020 30

LHC Beam Nb [x1011 ppb] εx,y [μm]

Present 1.3 2.7

HL-LHC target 2.3 2.1

• Increase brightness limit for PSB and PS with H- injection 
and increase of injection energy

• Reduce longitudinal dipolar coupled bunch instability in PS 
that limits bunch intensity (Longitudinal damper/feedback)

• Increase RF power in the SPS and  reduce coupled bunch 
instability that limits bunch intensity (add 800 MHz RF and 
impedance reduction)



The aim of HL-LHC
• Peak luminosity of L = 2×1035 cm-2s-1

• Levelled luminosity of Llevelled = 5×1034 cm-2s-1

• This should allow for:
• An integrated luminosity of 250 fb-1 per year, with the goal of Lint = 3000 fb-1

twelve years after the upgrade. 

This luminosity is more than ten times the luminosity reach of the first 10 
years of the LHC lifetime

The stored energy in a single beam will increase from ~300 MJ to 600 MJ
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HL-LHC: What will be changed ?
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• New IR-quads (inner triplets)
• New 11T short dipoles
• Collimation upgrade
• Cryogenics upgrade
• Crab Cavities
• Cold powering
• Machine protection
• …

Major intervention on more than 1.2 km of the LHC, these are only the main modifications and this list is not 
exhaustive

Just a very few selected items in the next slides



Need for Collimation (protection)
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Superconducting coil
T = 1.9 K

Quench limit ~15mJ/cm3

Proton beam
LHC: 320 MJ

HL-LHC: 600 MJ

A good factor 1010

difference



11 Tesla dipoles to Install Collimators
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11 Tesla Dipole 11 Tesla Dipole

15.66 m

2.16 m
6.75 m6.75 m

collimator



IR Quadrupoles (Inner Triplet)
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• Aim: reduce β* from 0.4m or 0.3m to 0.1m or even lower.
• International R&D effort (USA & Europe)
• New material: Nb3Sn instead of NbTi

• Main requirements:
• Aperture 120 mm
• Gradient 200 T/m
• Peak field ~ 13 T

• Presently in LHC:
• Aperture 70 mm
• Peak filed ~ 8 T

• The HL-LHC IR-Quadrupole design and R&D is a key stepping stone for future high-
field applications



Crossing Angle and Crab Cavities
• Increased beam-beam effect in LHC with higher beam intensity

• Requires increase of the crossing angle, hence reduction of the geometrical factor
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World’ s first 
crabbing on a 
proton beam

(23 May 2018)



Levelling & Anti-levelling – preparing for HL-LHC
• In certain conditions and depending on the experiments request, it is desirable to 

adapt the luminosity dynamically with beams in collision – levelling.
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Beam offset / separation

crossing angle

b* (= beam size at IP)

Levelling for HL-LHC



Planning
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• Recently start LS3 was shifted from 2024 to 2025
• Following the Covid-19 pendemic this is being revisited, especially 2020/2021 
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“We shall have no better conditions in the future if we are 
satisfied with all those which we have at present.”

Thomas A. Edison 
Inventor and businessman, 1874 –
1931

E. Lawrence who invented the 
cyclotron in 1929

The LHC Today





Synchrotron Oscillation
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• On each turn the phase, 𝛷, of a particle w.r.t. the RF waveform changes due to the 
synchrotron oscillations. 

rev
fh

dt
d

D= pf 2
Change in 
revolution 
frequency

Harmonic 
numberE

dE
f
df

rev

rev h-=

rev
fdE

E
h

dt
d

××
-

=\
hpf 2

• We know that 

• Combining this with the above 

dt
dEf

E
h

dt
d

rev ××
-

=
hpf 2

2

2
• This can be written as: 

Change of 
energy as a 

function of time



Synchrotron Oscillation
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• If 𝛷 is small then sin𝛷=𝛷

dt
dEf

E
h

dt
d

rev ××
-

=
hpf 2

2

2
fsinVdE = fsinVf

dt
dE

rev=and

fhpf sin.2 2
2

2

Vf
E
h

dt
d

rev ××
-

=

02 2
2

2

=÷
ø
ö

ç
è
æ ××+ fhpf Vf
E
h

dt
d

rev

• This is a SHM where the synchrotron oscillation frequency is 
given by: 

rev
f

E
Vh

×÷÷
ø

ö
çç
è

æ hp2
Synchrotron tune Qs



Accelerating Bucket
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fs

∆E

∆t (or 𝛷)

Stationary 
synchronous particle

accelerating 
synchronous particle

∆t (or 𝛷)
Stationary 
RF bucket

Accelerating RF 
bucket

V



Accelerating Bucket
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• The modification of the RF bucket reduces the acceptance
• The faster we accelerate (increasing sin 𝛷s ) the smaller the acceptance
• Faster acceleration also modifies the synchrotron tune.

• For a stationary bucket (𝛷s = 0) we had:

• For a moving bucket (𝛷s ≠ 0) this becomes:

rev
f
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h
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LHC & HL-LHC Parameters
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Parameter LHC LHC 2018 HL-LHC HL-LHC
Beam type: Design BCMS Design Stand. Design BCMS

Energy [TeV] 7 6.5 7 7
Number of bunches per ring 2808 2556 2748 2604
Bunch spacing [ns] 25 25 25 25
Bunch population Nb [1011 p/b] 1.15 1.1 2.2 2.2
Transv. norm. emittance SB en [mm mrad] 3.75 2 2.5 2.5
Betatron function at IP1 and IP5 𝛽* [m] 0.55 0.3/0.25(2) 0.2 (0.15) 0.2 (0.15)
Half crossing angle in IP1/5 [μrad] 142.5 160/130(1) 260 260
Geometrical factor w/o crab cavities at min. 𝛽* 0.836 - 0.369 0.369
Geometrical factor with crab cavities at min. 𝛽* - - 0.715 0.715
Peak Luminosity w/o crab cavities [1034 cm-2s-1] 1 2.1 6.52 6.18
Peak luminosity with crab cavities [1034 cm-2s-1] - - 12.6 11.9
Levelled luminosity [1034 cm-2s-1] - - 5.32 5.02
Expected levelling time [h] - - 5.23 5.23
Events/crossing μ (with levelling & crab cavtities) ~25 ~60 140 140
Stored beam energy [MJ] 360 320 675 640


